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In this work we present a mechanism to detect the presence of an external electric field of either weak or
large amplitude by means of the decay process from an unstable state, described by a bistable potential, of an
electrically charged Brownian particle embedded in a uniform electromagnetic field. Since the detection pro-
cess takes place around the initial unstable state of the bistable potential, our theoretical description is given in
the linear approximation of the aforementioned potential. The decay process is characterized through the
statistics of the passage time distribution calculated by means of two theoretical approaches relying on the
overdamped Langevin equation: one is the quasideterministic approach valid for large times and used for the
detection of weak signals, whereas the other one is the rotational approach, valid for intermediate times and
adequate for the detection of large electric-field amplitudes.
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I. INTRODUCTION

The first passage time �FPT� characterization remains a
topic of great interest in the study far from equilibrium sys-
tems where the stochastic fluctuations play an important role,
as can be corroborated by the growing number of recent
theoretical research on its application in fields as diverse as
physics, chemistry, and biology �1–9�. Many of these studies
have been formulated within the context of either the Lange-
vin or Fokker-Planck-type equations for Markovian �1–17�
and non-Markovian �18–21� processes. In 1989, it was
shown by Vemuri and Roy �13� that weak optical signals can
be detected via the transient dynamics of a laser much in the
same way as the super-regenerative detection in radar receiv-
ers. The physical idea behind this proposal is that weak sig-
nals are greatly amplified when used to trigger the decay of
an unstable state. This fact was immediately supported theo-
retically by means of the time characterization of such a
transient dynamics �14,15� and experimentally corroborated
by Littler et al. �16�. Also, in the context of the PT distribu-
tion, the detection of large optical signals in lasers was stud-
ied in Ref. �17�. At the beginning of this century, the pro-
posal of Refs. �14,17� was extended to characterize the decay
process of the rotating unstable systems for Gaussian white
noise �22� and Gaussian colored noise �23�. Inspired by the
works done by Vemuri and Roy �13�, Balle et al. �14�, and
Dellunde et al. �17� we present in this work an alternative
mechanism to detect weak and large amplitudes of an exter-
nal electric field through the decay process from the unstable
state of a two-dimensional bistable potential of a charged
Brownian particle in a uniform electromagnetic field. The

decay process is used in the same way as in a super-
regenerative receiver and takes place in the following way:
in the presence of just a magnetic field, pointing along the z
axis, the decay process starts when the charged Brownian
particle, initially located around the unstable state of a two-
dimensional bistable potential V�x ,y�, leaves this initial state
by effect of thermal fluctuations �internal noise�. Then it
evolves downhill in the potential up to a prescribed reference
value representing the potential absorbing barrier, which is
taken as a quantity proportional to the steady-state value of
the bistable potential. The force responsible of the rotational
evolution of the particle is the magnetic force which lies on
the x-y plane. If, at the initial unstable state, the particle is
additionally subject to the action of an external constant elec-
tric field, then the decay process will be accelerated by the
corresponding electric force. In the case where the amplitude
of the electric field is less or of the same order than the
intensity of the internal noise, the decay process is domi-
nated by thermal fluctuations and the dynamical character-
ization is given through the quasideterministic �QD� ap-
proach. In the opposite case, if the amplitude of the electric
field dominates over the noise intensity, the decay process is
driven by this external field, and the dynamical relaxation is
practically deterministic, being then described by another ap-
proach here named to as rotational approach �RA�. Due to
the initial presence of thermal fluctuations, the relaxation
process is described in the overdamped approximation �dif-
fusive regime� of the Langevin equation. Our theoretical de-
scription will be given in a transformed space of coordinates
�x� ,y��, obtained by means of a time-dependent rotation ma-
trix, where both approaches, QD and RA, are better formu-
lated. We will show that, notwithstanding the differences be-
tween the charged Brownian particle and the laser system of
Refs. �14,17�, their dynamical behaviors during the decay
process are completely similar. This might in turn motivate
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experimentalists to execute novel experiments to corroborate
our theoretical results.

There exists another physical mechanism �phenomenon�
known as stochastic resonance �SR� �24�, capable of detect-
ing and transmitting efficiently weak signals information in
nonlinear systems due to the presence of random noise. The
main characteristic of SR is the stochastic relaxation in
modulated bistable systems. The phenomenon shows the role
played by noise as it contributes to enhance the response of a
bistable system to weak signals. The SR effect requires three
basic ingredients: �i� a source of background noise, �ii� a
weak coherent input �such as a periodic signal�, and �iii� an
energetic activation barrier providing a threshold that the
system typically has to overcome in order to perform its
useful task. This phenomenon was first introduced by Benzi
et al. �25� and has widely been studied from the experimental
and theoretical point of views in a variety of systems ranging
from physics �26�, chemistry �27�, biology, and medicine
�28–35�. An important application of SR in biological sys-
tems is its ability to enhance the detection of weak signals
which improves the biological information processing. There
are many biological systems in which SR has been applied.
For instance, the mechanoreceptive system in crayfish �30�,
human tactile sensation �31�, human brain system �32�, neu-
ron systems �33�, ion channels �5,33�, and so on. An amount
of studies on SR has been done analyzing a paradigmatic
system: a one-dimensional bistable potential �double-well�,
in the context of Langevin and Fokker-Planck equations.
However, recent studies show the presence of SR in some
more complex biological systems which have been described
by a coupled set of Langevin equations �35�.

The detection of weak signals, in the decay process of
unstable states, is something similar �not equal� to SR pro-
cess. Both are basically related to stochastic relaxation in
nonlinear systems in which the cooperative effect between
weak signals and surrounding noise plays a fundamental
role. To begin with this line of thought, in this work we study
the simple case of a constant electromagnetic field in the
detection of weak electric field. However, a SR-like effect
can arise when we consider either a weak periodic electric
field with fluctuating phase and constant magnetic field or a
weak oscillating electromagnetic field. A detailed analysis of
these cases will be the purpose of study in future works.
Clearly, the model of a Brownian particle in a two-
dimensional bistable potential in the presence of weak peri-
odic electromagnetic field admits the description in terms of
SR in a similar way as the one given in the one-dimensional
case. Certainly, SR has been extended to a large number of
applications. However, our proposal which is an alternative
SR-like mechanism, opens new roads of investigation. It
may serve to explore the detection process of weak signals in
some other systems different of lasers as, for example, the
stochastic relaxation in a bistable magnetic system �26,36�,
or that in a single bistable neuron �34�, ion channels �5�, in
which the decay of the unstable state in the presence of
weak-electromagnetic field is of practical interest.

The plan of the paper is as follows. In Sec. II, we give a
brief description of the studied system as well as of the em-
ployed transformation that renders the equations employed in
the rest of the manuscript. In Sec. III we study the QD ap-

proach and the criteria for the detection of weak intensities of
the electric fields. The RA and the corresponding criteria for
the detection of strong fields are studied in Sec. IV. Our
concluding remarks are given in Sec. V.

II. LANGEVIN EQUATION

The Langevin equation for an ordinary Brownian particle
of mass m embedded in a thermal bath with a friction coef-
ficient � in the presence of an arbitrary two-dimensional
potential V�x ,y� is

m
du

dt
= − �u − �V + ��t� , �1�

where u�dr /dt= �ux ,uy� is the two-dimensional velocity, r
= �x ,y� is the position vector, � is the two-dimensional gra-
dient operator, and ��t� is the fluctuating force vector ��t�
= ��x ,�y� with zero mean value ��i�t��=0 and correlation
function ��i�t�� j�t���=2��ij��t− t��. � is the noise intensity
which, according to the fluctuation-dissipation relation in the
absence of time-dependent external forces, satisfies �
=�kBT, with kB as the Boltzmann constant and T as the tem-
perature of the surrounding medium �the bath�. For the par-
ticular two-dimensional bistable potential V�x ,y�
=−�a /2��x2+y2�+ �b /4��x2+y2�2 with a, b�0, the associated
force is F=−�V=ar−br2r, where r2=x2+y2 is the square
modulus of the vector r. Furthermore, if the Brownian par-
ticle is electrically charged with charge q and is also under
the action of a uniform electromagnetic field, a Lorentz force
FL= �q /c�u�B+qE will be present. For the case B
= �0,0 ,B� and E= �Ex ,Ey� the two-dimensional Langevin
equation reads as

du

dt
= −

�

m
u + Wu +

a

m
r −

b

m
r2r +

q

m
E +

1

m
��t� , �2�

with W a real 2�2 antisymmetric matrix given by

W = � 0 �

− � 0
	 �3�

and �=qB /mc being the Larmor frequency. In the over-
damped approximation the inertial term mu̇ can be neglected
and the above Langevin equation reduces to

dr

dt
= ãr + W̃r − br2�r + q�E + ���t� , �4�

where W̃ and � are matrices given by

W̃ = � 0 �̃

− �̃ 0
	, � =

1

�e
� 1 C

− C 1 	 , �5�

with ã=a /�e, �̃= ãC such that C=qB /c� is a dimensionless
parameter, and �e=��1+C2�, which is an effective,
magnetic-field-dependent friction coefficient. Our scheme
will be formulated in the transformed space of coordinates

r�=e−W̃tr, wherewith Langevin Eq. �2� transforms into
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dr�

dt
= ãr� − br�2�r� + q�R−1�t�E + �R−1�t���t� , �6�

where R�t�=eW̃t is an orthogonal rotation matrix such that its
transpose is also its inverse, i.e., RT�t�=R−1�t�, and R−1�t�
=e−W̃t such that

R�t� = � cos �̃t sin �̃t

− sin �̃t cos �̃t
	 . �7�

The third and fourth terms of Eq. �4� represent the time-
dependent rotating electric and fluctuating forces respec-
tively. Also r�2=x�2+y�2 with r�2=r2, which means that the
modulus of vector r remains invariant under the transforma-
tion R−1�t�.

III. QD APPROACH

We are interested in calculating the probability distribu-
tion of the passage time required by the charged particle to
reach a prescribed reference value R� in its decay process
from the initial unstable state of the bistable potential caused
by both the internal fluctuations and the external electric
field. In a similar way as done in the laser system of Refs.
�14,16,17� the detection process must take place around the
initial unstable state of the bistable potential; thus the decay
process of the charged particle must stop at a fixed value,
representing the absorbing potential’s barrier, taken as R2

=C0rst
2 , where 0	C0	1 and rst

2 =a /b. The value of C0 must
be determined by the experiment �in the laser system this
value is 2% of the intensity steady-sate value�. In our case,
the steady-state value can be calculated from the determinis-
tic evolution of Eq. �4� without the electric field in terms of
the variable r�r2, and it satisfies dr /dt= �2ã /rst�r�rst−r�,
where rst=a /b is the stationary-state value. In a similar way,
in the transformed space of coordinates the variable r��r�2

satisfies the deterministic equation dr� /dt= �2ã /rst� �r��rst�
−r��, and also rst� =a /b. To calculate the mean first passage
time �MFPT� when the strength of the electric field is less or
of the same order than the intensity of the noise, we use the
formalism of the QD approach �14,22� which relies on the
linear approximation of Eq. �6� that reads as

dr�

dt
= ãr� + q�R−1�t�E + �R−1�t���t� . �8�

The solution of this last equation the initial conditions x0�
= �x0� ,y0��= �0,0� is given as

x� = h��t�eãt, �9�

where

h��t� = 

0

t

e−ãs�R−1�s��qE + ��s��ds . �10�

In terms of its components we have

hi��t� = 

0

t

e−ãs�ij�R−1� jk�s��qEk + �k�s��ds . �11�

We recall that the purpose of the QD approach is to show
that stochastic process �9� becomes quasideterministic
�12,14,22� in the large time limit such that, for t
1 /2ã, the
stochastic process hi��t� plays the role of an effective initial
condition; i.e., hi���� behaves as a Gaussian random variable.
That this is indeed the case can be corroborated by noting
that, for small noise intensity and weak electric fields, it can
be guaranteed that

lim
t→�

dhi��t�
dt

= lim
t→�

e−ãt�ij�R−1� jk�t��qEk + �k�t�� → 0,

�12�

and therefore hi���� becomes a Gaussian random variable,
i.e., hi����=hi�, and therefore in this limit case the stochastic
process described by Eq. �9� becomes a quasideterministic
one. In terms of the modulus r�2 it reads as

r�2�t� = h�2e2ãt, �13�

where h�2=h1�
2+h2�

2. Therefore, the random first passage
time required for the charged particle to reach a prescribed
reference value R� is

t� = �1/2ã�ln�R�2/h�2� . �14�

This random passage time requires of the marginal probabil-
ity density P�h�� which can be calculated from the joint
probability density given by the Gaussian distribution �37�

P�h1�,h2�� = N exp�−
1

2 �
i,j=1

2

��−1�ij�hi� − �hi����hj� − �hj��� ,

�15�

where N=1 /2�det �ij�1/2 is the normalization factor and
�ij = �hi�hj��− �hi���hj�� the correlation matrix. From Eq. �11�
we have

�hi�� = q

0

�

e−ãs�ik�R−1�kl�s�Elds . �16�

�hi�hj�� = �hi���hj�� + 

0

� 

0

�

e−ã�s+s���ik� jl�R−1�km�s�

��R−1�ln�s����m�s��n�s���dsds�. �17�

After some algebra Eq. �17� reduces to �hi�hj��= �hi���hj��
+ �� /�a��ij, which tells us that the variables hi� are indepen-
dent and that �ij = �� /�a��ij is a diagonal matrix with ele-
ments �ii��2=� /�a. Therefore, joint probability density
�15� now reduces to

P�h1�,h2�� =
1

2�2e−�1/2�2���h1� − �h1���2+�h2� − �h2���2�. �18�

The mean values �hi�� can be calculated by assuming, without
loss of generality, that E= �E ,E� /�2, with E being the modu-
lus of this vector. In this case it is easy to show that �h1��
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= �h2��=qE /�2a. The marginal probability density P�h�� can
be calculated using the Jacobian transformation dV=J�v�dv,
where v= �h ,�� is the new space of variables. In this case
dV=Ch�dh�, with C as a constant. After some algebra we get
�14,22�

P�h�� = �h�/�2�I0�p�h�/�2�e−�1/2�2��h�2+p�2�, �19�

where p�2= �h1��
2+ �h2��

2= �qE�2 /a2 and I0�x� is the modified
Bessel’s function of zeroth order �38�. The statistical proper-
ties of first passage time �FPT� distribution can be calculated
through the moment generating function defined as G�2ã��
��e−2ã�t�, and thus G�2ã��= ��R�2 /h�2�−��. This generating
function is calculated from the marginal probability P�h��
given by Eq. �19�, giving as a result �22�

G�2ã�� = �R�2/�2�−�e−��2 �
m=0

�
��m + � + 1�

�m!�2 ��2m

= G0�2ã��e−��2
M�� + 1,1,��2� , �20�

with G0�2ã��= �R�2 /�2�−����+1�. The moment generating
function in the absence of the external electric field,
M��+1,1 ,��2�, is the Kummer confluent hypergeometric
function �38� with ��2= p�2 /2�2=��qE�2 /2a�. The MFPT is
then calculated from �2ãt��= �−dG�2ã�� /d���=0 and, after
some algebra, leads to

�2ãt�� = �2ãt��0 + �
m=1

�
�− 1�m��2m

mm!
, �21�

where

�2ãt��0 = ln�aR�2/2�� − ��1� , �22�

is the MFPT in the absence of the external electric field
���=0� and ��1�=−�=−0.577 the Euler constant. The vari-
ance of the passage time distribution, defined as ���t��2�
= �t�2�− �t��2, can be calculated from ��2ãt��2�
= �−d2G�2ã�� /d�2��=0, and, again after some algebra, we can
show that �22�

��2ã�t��2� = ���1� + 2�
m=2

� ��
k=1

m−1
1

k
	 �− 1�m��2m

mm!

− ��
m=1

�
�− 1�m��2m

mm! 2

. �23�

For practical purposes, if the parameter satisfies ��2�1,
which implies that the strength of the electric field is less or
of the same order than the intensity of the noise, the MFPT
and its variance can be approximated by

�2ãt�� = �2ãt�0 − ��2 + ���4/4� , �24�

��2ã�t��2� = ���1� − ���4/2� , �25�

Detection of weak electric fields

As we can see, results �24� and �25� are very similar to
Eqs. �22� and �26� of Ref. �14�, if ��=� /2. For the detection

of weak amplitudes of the electric field we can use the same
criteria used in Ref. �14�, which establishes that the differ-
ence between the time scales in the presence and in the ab-
sence of the electric field is greater or equal than the maxi-
mum variance; that is,

��t���c�
− �t����=0�2 � ���t��2���=0. �26�

Using Eqs. �24� and �25� we obtain the value of �c�
� ����1��1/4�1.13, which is the critical value for which the
weak electric field can be detected. However, for a rescaled
parameter ��=� /2 and thus employing again the above
equations, we get �c� �4���1��1/4�1.6, which is the same
value calculated in Ref. �14�. Below this value the electric
field cannot be detected. On the other hand, if ����c�, the
amplitude of the electric field can be efficiently detected be-
cause it dominates over the noise intensity and the dynamics
is dominated by the deterministic evolution. In this case it
can be shown that the MFPT and its variance are approxi-
mated by �14,22�

�2ãt�� � ln�aR�/qE�2 �27�

���t��2� � 1/2ã2��2 �28�

In Fig. 1�a� we show that the critical value of �c�1.6 cor-
responds to the match between the two approximations �Eqs.
�24� and �27��. Here it is important to comment that Eqs.
�24�, �25�, �27�, and �28� have been derived from the QD
approach. However, they are not actually appropriate to de-
scribe the rotational effects appearing in a natural way in the
dynamical evolution of the charged particle in a magnetic
field �see Eq. �4�� along its decay process to reach the value
R�. This process is better understood in the transformed
space of coordinates r�= �x� ,y��, where the trajectory of the
charged particle can be seen as rotational or not, depending
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10
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〉

(a) (b)

FIG. 1. �Color online� �a� Results for the mean passage time
�T�= �2ãt�� as a function of � obtained from Eq. �24� �solid line�
and from the deterministic solution �Eq. �27�� �dashed line� for
system parameters such that 2a�R�2 /�=1.8�107. �b� Determina-
tion of the bandwidth detection for large amplitude of the electric
field. The solid line is the third iteration of Eq. �38�, with a=300,
�=270. The dashed corresponds to Eq. �22� for C=0. The range of
intersection is C�3.0.
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on which force, electric or fluctuating, is greater. In fact, if
���1, it is shown in Fig. 2�a� that the trajectory is practi-
cally a straight line, with no rotational effect associated
whatsoever. This is the reason why the QD approach is better
understood in the transformed space of coordinates.

If ��
1, the strength of the electric field is greater than
the intensity of the noise and the dynamical evolution of the
charged Brownian particle is rotational, as can be seen in
Fig. 2�b�. In this case, for both the dynamical characteriza-
tion of this decay process and the efficient detection of the
strong electric fields, we follow the RA studied in Refs.
�17,22�.

IV. ROTATIONAL APPROACH

To characterize the decay process from the unstable state,
the statistics of the FPT distribution will be formulated in the
limit of intermediate times. We also start from Eq. �9�, but
now, in the herein considered case, the random passage time
t� required to reach the R� value is

t� = �1/2ã�ln�R�2/h�2�t��� �29�

where hi��t� is the same as Eq. �10�. As we can see from Eq.
�29�, the random passage time is not easy to calculate be-
cause h��t� is also a function of time t. Therefore, for inter-
mediate times, we take advantage of the statistical properties
of the process h��t�, in such a way that

�hi��t�� = q

0

t

e−ãs�ik�R−1�kl�s�Elds , �30�

�hi��t�hj��t�� = �hi��t���hj��t�� +
�

�ã
�1 − e−ãt��ij . �31�

To solve the problem we propose an alternative expression
for hi��t� compatible with Eqs. �30� and �31�. This expression
is �17,22�

hi��t� = �hi��t�� + g�t��i, �32�

where g2�t�= �1−e−2ãt� and �i is a Gaussian random variable
with zero mean value and correlation ��i� j�= �� /�a��ij.
Now, if the strength of the electric field dominates over the

noise intensity, the first term of the right-hand side of Eq.
�32� is the dominant one. Therefore, we can make a first-
order series expansion in powers of �i in Eq. �29� such that
the passage time can be approximated by

t� = tP −
g�tP�

ã
�t1�1 + t2�2� + O��1

2,�2
2� , �33�

where tP is the zeroth order passage time given by tP
= �1 /2ã�ln�R�2 / ��h��tP���2�, with ti= �hi��tP�� / ��h��tP���2 and
��h��tP���2= �h1��tP��2+ �h2��tP��2. In this case the variance is
also approximated by

���t��2� =
�

�a

g2�tP�
ã2 �t1

2 + t2
2� . �34�

From Eq. �33�, the mean passage time reads as

�t�� = tP = �1/2ã�ln�R�2/��h��tP���2� . �35�

We again consider the electric field as E= �E ,E� /�2 and
thus, after some algebra, we can show from Eq. �30� that
�h1��t��=A− iB and �h2��t��=A+ iB, where A=z�t�+z��t�, B
=z�t�−z��t� and

z�t� =
qE

2�2a
�1 − e−�̃1t�, z��t� =

qE

2�2a
�1 − e−�̃2t� , �36�

such that �̃1= ã+ i�̃ and �̃2= ã− i�̃. Under these conditions it
can be shown that

��h��t���2 = 8z�t�z��t� =
�qE�2

a2 �1 + ��t�� , �37�

��t� being ��t�= �e−2ãt−2e−ãt cos��̃t��. Therefore, the MFPT
required by the charged particle to reach the potential’s bar-
rier �circle or radius R��, as shown in Fig. 2�b�, is approxi-
mated by

�t�� = tP = t0 −
1

2ã
ln�1 + ��tP�� , �38�

where t0= �1 /2ã�ln�aR� /qE�2. For large amplitudes of the
electric field, i.e., ��
1, it is possible to obtain, for the
variance, the following expression:

���t��2� =
g�tP�

2ã2��2�1 + ��tP���1 +
���tP�

ã�1 + ��tP��−2

.

�39�

Equations �38� and �39� satisfy the necessary requirements in
the infinite-time limit. In this case ��t�→0, �t��→ tP, and the
variance vanishes as ���t��2�→1 /2�ã2��2�, consistently with
Eqs. �27� and �28� as expected. The MFPT and its variance
can be calculated through the iterative procedure tP

�0�= tP and
tP
n+1= tP− �1 /2ã�ln�1+��tP

n ��. The plot of the MFPT �Eq.
�38�� and its variance Eq. �39�, as well as the results given by
Eqs. �27� and �28� together with the values computed from
numerical simulations, is presented in Fig. 3. As we can see,
we obtain an excellent agreement.
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FIG. 2. �Color online� Dynamical evolution of a single trajec-
tory of the system given by linear approximation of Eq. �8� in the
�x� ,y�� space for values a=300, �=270, C=10, R�=1.0, �a� qE
=10−3 and �b� qE=20.0.
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Detection of large electric fields

The bandwidth detection can evaluated from Fig. 1�b�, in
a similar way as done in Refs. �17,22�. The solid line is the
third iteration of Eq. �38�, with a=300 s−2, and �=270 s−1.
The dashed line is the value of Eq. �24� in the absence of
both the electric and magnetic fields �C=0�. The intersection
range is �3.0. Due to the number of involved parameters,
their complicated interdependence, and the employed values,
we obtain the bandwidth detection range in the order of Hz,
instead of MHz as in the laser system �17�. One possible

value for this bandwidth detection is obtained from �̃

=aC /��1+C2�, which in this case we get �̃�0.3 Hz. We
can see that, as the dashed line descends, the intersection

range diminishes but �̃ increases.

V. CONCLUSIONS

We have shown through the statistics of the FPT distribu-
tion that it is possible to detect weak and large amplitudes of
an electric field by means of the decay process from the
unstable state of a charged Brownian particle embedded in a
uniform electromagnetic field. The decay process plays the
role of a super-regenerative receiver that amplifies the exter-
nal signal. For the detection of weak electric fields, we have
found the same critical value �c�1.6 as that calculated in
Ref. �14� for the laser system with ��=� /2. This is a sur-
prising result due to the fact that the charged Brownian par-
ticle and the laser system are physically different systems.
Equally surprising are the results obtained in the rotational
characterization of the decay process of the Brownian par-
ticle, because they are very similar to those obtained in Ref.
�17�, although Eqs. �38� and �39� are slightly more compli-
cated than those employed in the aforementioned reference

due to the fact that the ã and �̃ parameters are given in terms
of the other parameters a, �, and C=qB /c�. This is the
reason why the bandwidth detection range is different in both
systems.

Lastly, we would like to comment that the complete dy-
namical characterization, through the so-called nonlinear re-
laxation times, taking into account the nonlinear effects of
the two-dimensional bistable potential is in progress.
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